ReCon: An Online Task ReConfiguration Approach for Robust Plan Execution

نویسندگان

  • Enrico Scala
  • Roberto Micalizio
  • Pietro Torasso
چکیده

The paper presents an approach for the robust plan execution in presence of consumable and continuous resources. Plan execution is a critical activity since a number of unexpected situations could prevent the feasibility of tasks to be accomplished; however, many robotic scenarios (e.g. in space exploration) disallow robotic systems to perform significant deviations from the original plan formulation. In order to both (i) preserve the ”stability” of the current plan and (ii) provide the system with a reasonable level of autonomy in handling unexpected situations, an innovative approach based on task reconfiguration is presented. Exploiting an enriched action formulation grounding on the notion of execution modalities, ReCon replaces the replanning mechanism with a novel reconfiguration mechanism, handled by means of a CSP solver. The paper studies the system for a typical planetary rover mission and provides a rich experimental analysis showing that, when the anomalies refer to unexpected resources consumption, the reconfiguration is not only more efficient but also more effective than a plan adaptation mechanism. The experiments are performed by evaluating the recovery performances depending on constraints on computational costs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Satisfying Resource Constraints in Space Missions by On-line Task Reconfiguration

This paper addresses the problem of robust plan execution in the context of exploration mission plans carried on by planetary rovers. In order to deal with limited computational resources, and with limited rover’s autonomy (the rover is not allowed to change its plan), the paper proposes a novel methodology to cope with contingencies rising at execution time. The approach aims at reconfiguring ...

متن کامل

Robust Execution of Rover Plans via Action Modalities Reconfiguration

Robust execution of exploration mission plans has to deal with limited computational power on-board a planetary rover, and with limited rover’s autonomy. In most cases, these limitations practically prevent the rover to synthesize a new mission plan when some unexpected contingency arises. The paper shows that when such deviations refers to anomalies on the consumption of resources, robust exec...

متن کامل

Soccer Goalkeeper Task Modeling and Analysis by Petri Nets

In a robotic soccer team, goalkeeper is an important challenging role, which has different characteristics from the other teammates. This paper proposes a new learning-based behavior model for a soccer goalkeeper robot by using Petri nets. The model focuses on modeling and analyzing, both qualitatively and quantitatively, for the goalkeeper role so that we have a model-based knowledge of the ta...

متن کامل

An Effective Task Scheduling Framework for Cloud Computing using NSGA-II

Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...

متن کامل

A Robust Model for a Dynamic Cellular Manufacturing System with Production Planning

In this paper, a robust optimization approach is proposed to design a dynamic cellular manufacturing system (DCMS) under uncertainty of processing time of products. In addition, a mathematical model considering cell formation, inter-cell design and production planning under a dynamic environment (i.e., product mix and demand are changed in each period) is presented. Therefore, reconfiguration b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014